INTRODUCTION

Injection of CO, into deep saline aquifers or depleted oil and gas reservoirs
has the potential to sequester significant mass of CO, in a sustainable manner
(Szulczewski et al., 2012). Fluid injection activities (e.g., hydraulic fracturing,
deep disposal of wastewater, enhanced geothermal stimulation) can reactivate
pre-existing faults and induce seismicity (Ellsworth, 2013). Likewise, large-
scale injection of CO, that generates overpressures and decreases effective
normal stresses may reactivate pre-existing faults in caprocks (Fig.1). Hence,
it is of particular interest to understand the evolution of permeability of
caprocks as a result of seismic and aseismic deformation. In this study, we
report both frictional experiments and analyses of shear slip to explore the
fracture frictional stability-permeability interactions during fracture shearing.
Particularly, the mineralogical controls on stability-permeability relationships

are investigated.
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Fig.1 Injection of CO, and reactivate pre-existing faults

SAMPLE PREPARATION

Frictional stability-permeability experiments are performed on both natural and
artificial samples. For natural samples, we use Green River Shale, Longmaxi
Shale and Marcellus Shale. For artificial samples, we uniformly mix three types
of mineral particles (tectosilicate, carbonate, phyllosilicate) based on the
assumption that all shales are primarily composed of these three groups of
minerals (Fig.2). The particle size is less than 100 microns and compressed in a
steel press (Fig.3) with 100 MPa for 72 hours. The samples used for

experiments are shown in Fig.4.
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» what is the fracture friction-permeability interaction during shear slip?
» what is the influence of mineral composition on friction-permeability relationships?

EXPERIMENTAL SETUP

Fluid-flow experiments are conducted in a triaxial pressure vessel to
independently apply confining pressure, pore pressure, and shear velocity while
concurrently monitoring the evolution of fracture permeability during experiments
(Fig.5). We conduct velocity stepping experiments and capture the friction and
permeability evolution when a velocity step is applied (Samuelson et al., 2009).
The results are quantified using rate-and-state friction laws (Scholz, 1998)
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Fig.5 Experimental Setup

EXPERIMENTAL RESULTS

Experimental results for natural samples and artificial samples are presented in
Fig. 6 and Fig.7. The left figures are friction and permeability evolution during

the shearing and right figures indicate friction and permeability change when an
up-step in velocity is applied. The stability-permeability correlations are shown in

Fig.8 and the XRD results are shown in Fig.9.
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Fig.6 Experimental results of friction, stability and permeability of natural fractures
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Fig.7 Experimental results of friction, stability and permeability of artificial fractures

Stability-Permeability Relationship
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Fig.8 Stability-permeability relationship for all samples

CONCLUSIONS
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Fig.9 XRD results

strong swelling effect results in significant permeability damage.

At low confining stresses (3MPa), all of the samples indicate velocity-
strengthening behavior (aseismic slip).
For fractures composed of clay-rich weak minerals (phyllosilicate), the

For tectosilicate-dominant rocks, a velocity up-step leads to a permeability

iIncrease while a velocity down-step results to a permeability decrease.

For phyllosilicate-dominant rocks, a velocity up-step leads to a permeability

decrease while a velocity down-step results to a permeability increase.
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